Please read this insert completely prior to using the product.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

www.ArborAssays.com
Table of Contents

- Background ... 3
- Assay Principle .. 4
- Related Products 4
- Supplied Components 5
- Storage Instructions 5
- Other Materials Required 6
- Precautions ... 6
- Sample Types .. 6-7
- Sample Preparation 7
- Reagent Preparation 7-8
- Assay Protocol .. 9
- Calculation of Results 10
- Typical Data ... 10-11
- Validation Data
 - Sensitivity, Linearity, etc. 11-13
- Samples Values, Cross Reactivity & Interferents ... 14
- Warranty & Contact Information 15
- Plate Layout Sheet 16
Eicosanoid signal transduction pathways are highly conserved and are involved in a number of physiological processes. Prostaglandins are synthesized from arachidonic acid by cyclooxygenase (COX)-1 or -2, which convert the acid into PGH₂. This is further processed by cytosolic or microsomal prostaglandin synthases to become PGE₂ or one of several other prostanoids. Prostacyclin is the major cyclooxygenase product in blood vessel walls and it is present in inflammatory fluids in similar concentrations to PGE₂. Prostacyclin is a potent vasodilator and is more potent than PGE₂ in producing hyperalgesia. PGE₂ is produced by a wide variety of tissues and in several pathological conditions, including inflammation, arthritis, fever, tissue injury, endometriosis, and a variety of cancers.

Other biological actions of PGE₂ include vasodilation, modulation of sleep/wake cycles, and facilitation of human immunodeficiency virus replication. It elevates cAMP levels, stimulates bone resorption, and has thermoregulatory effects. It has been shown to be a regulator of sodium excretion and renal hemodynamics.

ASSAY PRINCIPLE

The DetectX® Prostaglandin E$_2$ (PGE$_2$) CHEMILUMINESCENT Immunoassay (CLIA) kit is designed to quantitatively measure very low concentrations of PGE$_2$ present in serum, plasma, urine, saliva and tissue culture media samples. Please read the complete kit insert before performing this assay. A PGE$_2$ standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. Standards or diluted samples are pipetted into a white microtiter plate coated with an antibody to capture mouse IgG. A PGE$_2$-peroxidase conjugate is added to the standards and samples in the wells. The binding reaction is initiated by the addition of a monoclonal antibody to PGE$_2$ to each well. After an overnight incubation at 4°C, the plate is washed and a special chemiluminescent substrate is added. The substrate reacts with the bound PGE$_2$-peroxidase conjugate to produce light. The generated light is detected in a microtiter plate reader capable of reading luminescence. The concentration of the PGE$_2$ in the sample is calculated, after making suitable correction for the dilution of the sample, using software available with most plate readers.

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary Creatinine Detection Kit (2 Plate)</td>
<td>K002-H1</td>
</tr>
<tr>
<td>Urinary Creatinine Detection Kit (10 Plate)</td>
<td>K002-H5</td>
</tr>
<tr>
<td>Cortisol Enzyme Immunoassay Kits (Strip Wells)</td>
<td>K003-H1/H5</td>
</tr>
<tr>
<td>Cortisol Enzyme Immunoassay Kits (Whole Plate)</td>
<td>K003-H1W/H5W</td>
</tr>
<tr>
<td>Corticosterone Enzyme Immunoassay Kits</td>
<td>K014-H1/H5</td>
</tr>
<tr>
<td>Cortisone Enzyme Immunoassay Kits</td>
<td>K017-H1/H5</td>
</tr>
<tr>
<td>Prostaglandin E$_2$ Enzyme Immunoassay Kits</td>
<td>K018-H1/H5</td>
</tr>
<tr>
<td>Prostaglandin E$_2$ High Sensitivity Immunoassay Kits</td>
<td>K018-HX1/HX5</td>
</tr>
<tr>
<td>Hemoglobin Dual Range Detection Kit</td>
<td>K013-H1</td>
</tr>
</tbody>
</table>
SUPPLIED COMPONENTS

Coated White 96 Well Plates
White plastic microtiter plate(s) coated with goat anti-mouse IgG.
Kit K018-C1 OR -C5 1 OR 5 Each Catalog Number X010-1EA

Prostaglandin E₂ Standard
Prostaglandin E₂ at 20,000 pg/mL in a special stabilizing solution.
Kit K018-C1 OR -C5 70 μL Catalog Number C057-70UL

DetectX® Prostaglandin E₂ CLIA Antibody
A mouse monoclonal antibody specific for Prostaglandin E₂.
Kit K018-C1 OR -C5 3 mL OR 13 mL Catalog Number C073-3ML OR -13ML

DetectX® Prostaglandin E₂ CLIA Conjugate Concentrate Must be stored at -20°C.
A Prostaglandin E₂-peroxidase conjugate concentrate in a special stabilizing solution.
Kit K018-C1 OR -C5 150 μL OR 650 μL Catalog Number C074-150UL OR -650UL

Conjugate Diluent
Contains special stabilizers and additives.
Kit K018-C1 OR -C5 3 mL OR 13 mL Catalog Number X081-3ML OR -13ML

Assay Buffer (or Concentrate)
One plate kit uses a ready-to-use Assay Buffer. Five plate kit uses a 5X concentrate that should be diluted with deionized or distilled water.
Kit K018-C1 28 mL Catalog Number X066-28ML
Kit K018-C5 28 mL (Conc) Catalog Number X067-28ML

Wash Buffer Concentrate
A 20X concentrate that should be diluted with deionized or distilled water.
Kit K018-C1 OR -C5 30 mL OR 125 mL Catalog Number X007-30ML OR -125ML

Substrate Solution A
Kit K018-C1 OR -C5 6mL OR 28 mL Catalog Number X077-6ML OR -28ML

Substrate Solution B
Kit K018-C1 OR -C5 6mL OR 28 mL Catalog Number X078-6ML OR -28ML

Plate Sealer
Kit K018-HX1 OR -HX5 1 OR 5 Each Catalog Number X002-1EA

STORAGE INSTRUCTIONS

The unopened kit should be stored at -20°C. Once opened the kit can be stored at 4°C up to the expiration date on the kit label, except for the PGE₂ Standard and PGE₂ Conjugate. These must be stored at -20°C. The frozen PGE₂ Conjugate can be freeze-thawed multiple times.
OTHER MATERIALS REQUIRED

Distilled or deionized water.
Repeater pipet with disposable tips capable of dispensing 25 µL and 100 µL.
A microplate shaker.
A 4°C refrigerator.
96 well microplate reader capable of reading glow chemiluminescence. A list of some models of suitable readers can be found on our website at www.ArborAssays.com/resources/lit.asp. All luminometers read Relative Light Units (RLU). These RLU readings will vary with make or model of plate reader. **The number of RLU obtained is dependant on the sensitivity and gain of the reader used.** If you are unsure of how to properly configure your reader contact your plate reader manufacturer or carry out the following protocol:

Dilute 5 µL of the Prostaglandin E₂ CLIA Conjugate Concentrate into 95 µL of Conjugate Diluent. Dilute 5 µL of this diluted Prostaglandin E₂ CLIA Conjugate into 45 µL of deionized water. Pipet 5 µL of this diluted conjugate into a white well and add 100 µL of prepared CLIA substrate (see page 8 for details). This well will give you an intensity slightly above the maximum binding for the assay. Adjust the gain or sensitivity so that your reader is giving close to the maximum signal.

To properly analyze the data software will be required for converting raw RLU readings from the plate reader and carrying out four parameter logistic curve (4PLC) fitting. Contact your plate reader manufacturer for details.

PRECAUTIONS

As with all such products, this kit should only be used by qualified personnel who have had laboratory safety instruction. The complete insert should be read and understood before attempting to use the product.

The antibody coated plate needs to be stored desiccated. The silica gel pack included in the foil ziploc bag will keep the plate dry. The silica gel pack will turn from blue to pink if the ziploc has not been closed properly.

This kit utilizes a peroxidase-based readout system. Buffers, including other manufacturers Wash Buffers, containing sodium azide will inhibit color production from the enzyme. Make sure all buffers used for samples are **azide free.** Ensure that any plate washing system is rinsed well with deionized water prior to using the supplied Wash Buffer as prepared on Page 8.

SAMPLE TYPES

This assay has been validated for saliva, urine, serum, EDTA and heparin plasma samples and for tissue culture samples. A general cyclooxygenase inhibitor, such as meclofenamic acid or indomethacin at 15 µM should be added immediately after collection of any biological samples, such as serum and plasma. All samples should be frozen rapidly in dry ice/ethanol and **stored at -80°C.**

Samples containing visible particulate should be centrifuged prior to using. Severely hemolyzed samples should not be used in this kit. All samples containing lipids may interfere with the measurement of PGE₂. Samples containing high lipid content may be extracted as described below. A useful online resource for the extraction of bioactive lipids can be found at: http://lipidlibrary.aocs.org/topics/spe_alm/index.htm#ext.

Prostaglandin E₂ is identical across all species and we expect this kit may measure Prostaglandin E₂ from sources other than human. The end user should evaluate recoveries of Prostaglandin E₂ in other samples being tested.
Sample Preparation

Serum and Plasma Samples
Serum and plasma samples should be diluted $\geq 1:10$ with the supplied Assay Buffer prior running in the assay. **Mouse serum and plasma samples** need to be diluted $\geq 1:20$ with the supplied Assay Buffer prior running in the assay to minimize any interference of mouse IgG on the assay. Typical normal mouse PGE$_2$ serum levels are 45-150 ng/mL.

Urine Samples
Urine samples should be diluted $\geq 1:8$ with the supplied Assay Buffer prior running in the assay.

Saliva Samples
Saliva samples should be diluted $\geq 1:2$ with the supplied Assay Buffer prior running in the assay. See our Saliva Sample Handling Instructions at http://www.arborassays.com/documents/.

Tissue Culture Media
For measuring prostaglandin E$_2$ in tissue culture media (TCM), samples should be read off a standard curve generated in TCM. Samples may need to be diluted further in TCM. We have validated the assay using RPMI-1640.

Extracted Samples
We have a detailed Extraction Protocol available on our web site at: http://www.ArborAssays.com/resources/lit.asp. The ethanol concentration in the final Assay Buffer dilution added to the well should be $<5\%$.

Use all samples within 2 hours of preparation.

Reagent Preparation

Allow the kit reagents to thaw and come to room temperature for 30-60 minutes. We recommend that all standards and samples be run in duplicate to allow the end user to accurately determine prostaglandin E$_2$ concentrations. Ensure that all samples have reached room temperature and have been diluted as appropriate prior to running them in the kit.

Assay Buffer (Dilute ONLY for the Five Plate Kit, K018-C5)
For the Five Plate Kit, K018-C5, prepare the Assay Buffer by diluting the Assay Buffer Concentrate 1:5 by adding one part of the concentrate to four parts of deionized water. Once diluted this is stable at 4°C for 3 months. **Do not** dilute the Assay Buffer in the One Plate Kit, K018-C1.

Wash Buffer
Dilute Wash Buffer Concentrate 1:20 by adding one part of the concentrate to nineteen parts of deionized water. Once diluted this is stable at room temperature for 3 months.
Reagent Preparation Continued

Standard Preparation
Label one test tube as Stock 2 and seven test tubes as #1 through #7. Pipet 135 µL of Assay Buffer into the Stock 2 tube and 525 µL of Assay Buffer into tube #1. Pipet 300 µL of Assay Buffer into tubes #2 to #7. **The Prostaglandin E₂ stock solution contains an organic solvent. Prerinse the pipet tip several times to ensure accurate delivery.** Carefully add 15 µL of the PGE₂ stock solution to the Stock 2 tube and vortex completely. Take 100 µL of the PGE₂ solution in the Stock 2 tube and add it to tube #1 and vortex completely. Take 300 µL of the PGE₂ solution in tube #1 and add it to tube #2 and vortex completely. Repeat the serial dilutions for tubes #3 through #7. The concentration of Prostaglandin E₂ in tubes 1 through 7 will be 320, 160, 80, 40, 20, 10 and 5 pg/mL.

Use all Standards within 2 hours of preparation.

<table>
<thead>
<tr>
<th></th>
<th>Stock 2</th>
<th>Std 1</th>
<th>Std 2</th>
<th>Std 3</th>
<th>Std 4</th>
<th>Std 5</th>
<th>Std 6</th>
<th>Std 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer (µL)</td>
<td>135</td>
<td>525</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Addition</td>
<td>PGE₂ Std.</td>
<td>Stock 2</td>
<td>Std 1</td>
<td>Std 2</td>
<td>Std 3</td>
<td>Std 4</td>
<td>Std 5</td>
<td>Std 6</td>
</tr>
<tr>
<td>Vol of Addition (µL)</td>
<td>15</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Final Conc (pg/mL)</td>
<td>2,000</td>
<td>320</td>
<td>160</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

PGE₂ Conjugate
The supplied PGE₂ Conjugate Concentrate should be diluted 1:20 with the Conjugate Diluent as indicated in the table below. Once diluted the PGE₂ conjugate is to be used the same day.

<table>
<thead>
<tr>
<th></th>
<th>1 Plate</th>
<th>2 Plates</th>
<th>3 Plates</th>
<th>4 Plates</th>
<th>5 Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugate Concentrate</td>
<td>125 µL</td>
<td>250 µL</td>
<td>375 µL</td>
<td>500 µL</td>
<td>625 µL</td>
</tr>
<tr>
<td>Conjugate Diluent</td>
<td>2.375 mL</td>
<td>4.75 mL</td>
<td>7.125 mL</td>
<td>9.5 mL</td>
<td>11.375 mL</td>
</tr>
<tr>
<td>Final Mixture</td>
<td>2.5 mL</td>
<td>5 mL</td>
<td>7.5 mL</td>
<td>10 mL</td>
<td>12.5 mL</td>
</tr>
</tbody>
</table>

Chemiluminescent Substrate
Mix one part of the Substrate Solution A with one part of Substrate Solution B in a brown bottle. Once mixed the substrate is stable for one month when stored at 4°C.
ASSAY PROTOCOL

1. Use the plate layout sheet on the back page to aid in proper sample and standard identification. Determine the number of wells to be used and return unused wells to the foil pouch with desiccant. Seal the ziploc plate bag and store at 4°C.

2. Pipet 100 µL of samples or standards into wells in the plate.

3. Pipet 125 µL of Assay Buffer into the non-specific binding (NSB) wells.

4. Pipet 100 µL of Assay Buffer into wells to act as maximum binding wells (B0 or 0 pg/mL).

5. Add 25 µL of the diluted DetectX® Prostaglandin E₂ CLIA Conjugate to each well using a repeater pipet.

6. Add 25 µL of the DetectX® Prostaglandin E₂ CLIA Antibody to each well, except the NSB wells, using a repeater pipet.

7. Cover the plate with the plate sealer and shake the plate for 15 minutes at room temperature.

8. Place the covered plate in a 4°C refrigerator for 16 hours.

9. The next morning take the plate from the refrigerator and wash each well 4 times with 300 µL wash buffer. Tap the plate dry on clean absorbent towels.

10. Add 100 µL of the mixed Chemiluminescent Substrate to each well, using a repeater pipet.

11. Incubate the plate at room temperature for 5 minutes without shaking.

12. Read the luminescence generated from each well in a mutimode or chemiluminescent plate reader using a 0.1 second read time per well. The chemiluminescent signal will decrease about 40% over 60 minutes.

13. Use the plate reader’s built-in 4PLC software capabilities to calculate cAMP concentration for each sample.
Calculation of Results

All luminometers read Relative Light Units (RLU). These RLU readings will vary with make or model of plate reader. Average the duplicate RLU readings for each standard and sample. Create a standard curve by reducing the data using the 4PLC fitting routine on the plate reader, after subtracting the mean RLU's for the NSB. The sample concentrations obtained, calculated from the %B/B0 curve, should be multiplied by the dilution factor to obtain neat sample values.

Or use the online tool from http://www.myassays.com/arbor-assays-pge2-chemiluminescent-immunoassay-kit.assay to calculate the data.

*The MyAssays logo is a registered trademark of MyAssays Ltd.

Typical Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean RLU</th>
<th>Net RLU</th>
<th>% B/B0</th>
<th>PGE₂ Conc. (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSB</td>
<td>2,990</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Standard 1</td>
<td>9,785</td>
<td>6,795</td>
<td>13.5</td>
<td>320</td>
</tr>
<tr>
<td>Standard 2</td>
<td>14,900</td>
<td>11,910</td>
<td>23.6</td>
<td>160</td>
</tr>
<tr>
<td>Standard 3</td>
<td>22,250</td>
<td>19,260</td>
<td>38.1</td>
<td>80</td>
</tr>
<tr>
<td>Standard 4</td>
<td>31,830</td>
<td>28,840</td>
<td>57.1</td>
<td>40</td>
</tr>
<tr>
<td>Standard 5</td>
<td>37,335</td>
<td>34,345</td>
<td>68.0</td>
<td>20</td>
</tr>
<tr>
<td>Standard 6</td>
<td>43,010</td>
<td>40,020</td>
<td>79.2</td>
<td>10</td>
</tr>
<tr>
<td>Standard 7</td>
<td>49,255</td>
<td>46,265</td>
<td>91.6</td>
<td>5</td>
</tr>
<tr>
<td>B0</td>
<td>53,495</td>
<td>50,505</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Sample 1</td>
<td>22,375</td>
<td>19,385</td>
<td>38.4</td>
<td>82.7</td>
</tr>
<tr>
<td>Sample 2</td>
<td>43,380</td>
<td>40,390</td>
<td>80.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Always run your own standard curve for calculation of results. Do not use this data.

Conversion Factor: 100 pg/mL of prostaglandin E₂ is equivalent to 283.7 pM.
Typical Standard Curves

Always run your own standard curves for calculation of results. Do not use this data.

VALIDATION DATA

Sensitivity
Sensitivity was calculated by comparing the RLU’s for twenty wells run for each of the B0 and standard #7. The detection limit was determined at two (2) standard deviations from the B0 along the standard curve.

Sensitivity was determined as 4.81 pg/mL. This is equivalent to 481 fg PGE₂ per sample or 1.365 fmol PGE₂ per sample.
Linearity

Linearity was determined by taking two diluted human serum samples, one with a low Prostaglandin E₂ level of 22.2 pg/mL and one with a higher level of 110.6 pg/mL, and mixing them in the ratios given below. The measured concentrations were compared to the expected values based on the ratios used.

<table>
<thead>
<tr>
<th>Low Serum</th>
<th>High Serum</th>
<th>Observed Conc. (pg/mL)</th>
<th>Expected Conc. (pg/mL)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>20%</td>
<td>37.6</td>
<td>39.8</td>
<td>94.3</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>60.8</td>
<td>57.5</td>
<td>105.7</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>69.6</td>
<td>75.2</td>
<td>92.5</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
<td>100.1</td>
<td>92.9</td>
<td>107.8</td>
</tr>
</tbody>
</table>

Mean Recovery 100.1%

![Graph showing the linearity of Prostaglandin E₂ assay](chart.png)

The equation of the line is:

\[y = 1.1111x - 6.7237 \]

with an R² value of 0.9606.
Intra Assay Precision
Two human samples were diluted with Assay Buffer and run in replicates of 20 in an assay. The mean and precision of the calculated Prostaglandin E$_2$ concentrations were:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prostaglandin E$_2$ Conc. (pg/mL)</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.1</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>32.9</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Inter Assay Precision
Two human samples were diluted with Assay Buffer and run in duplicates in nineteen assays run over multiple days by four operators. The mean and precision of the calculated Prostaglandin E$_2$ concentrations were:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prostaglandin E$_2$ Conc. (pg/mL)</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.0</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>33.2</td>
<td>13.5</td>
</tr>
</tbody>
</table>
SAMPLE VALUES

Ten human serum and plasma samples that did not contain COX inhibitors that would suppress PGE2 production were tested in the assay. Neat samples were diluted from 1:15 to 1:200 in Assay Buffer. Values, not adjusted for dilution, ranged from 3.95 to 260.7 pg/mL. Dilution adjusted values ranged from 395.1 to over 26,000 pg/mL. Four normal human urine samples were diluted from 1:15 to 1:30 in Assay Buffer and values, not adjusted for dilution, ranged from 3.47 to 124.8 pg/mL. Dilution adjusted values ranged from 79.1 to over 1,872 pg/mL. Three normal human saliva samples were diluted from 1:4 in Assay Buffer and values, not adjusted for dilution, ranged from 4.23 to 5.88 pg/mL. Dilution adjusted values ranged from 16.9 to over 23.5 pg/mL.

CROSS REACTIVITY

The following cross reactants were tested in the assay and calculated at the 50% binding point.

<table>
<thead>
<tr>
<th>Eicosanoid</th>
<th>Cross Reactivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostaglandin E<sub>2</sub></td>
<td>100%</td>
</tr>
<tr>
<td>Prostaglandin E<sub>1</sub></td>
<td>108.9%</td>
</tr>
<tr>
<td>Prostaglandin F<sub>2α</sub></td>
<td>2.00%</td>
</tr>
<tr>
<td>Thromboxane B<sub>2</sub></td>
<td>0.30%</td>
</tr>
<tr>
<td>6-keto-Prostaglandin F<sub>1α</sub></td>
<td><0.3%</td>
</tr>
<tr>
<td>15-keto-Prostaglandin E<sub>1</sub></td>
<td><0.3%</td>
</tr>
<tr>
<td>13,14-dihydro-15-keto-Prostaglandin F<sub>2α</sub></td>
<td><0.1%</td>
</tr>
<tr>
<td>16,16-dimethyl-Prostaglandin E<sub>2</sub></td>
<td><0.1%</td>
</tr>
<tr>
<td>Arachidonic Acid</td>
<td><0.1%</td>
</tr>
</tbody>
</table>

INTERFERENTS

A variety of solvents were tested as possible interfering substances in the assay. Organic solvents such as DMSO, Dimethylformamide (DMF), methanol and ethanol were tested in the assay at 0.1%. DMSO and DMF caused a 1.2% and 0.8% decrease in measured PGE₂ levels, whereas methanol and ethanol caused an increase of 2.5% and 4.6% in measured PGE₂ levels. A solvent only control should be run by the end user when appropriate.

Hemoglobin at 0.02 mg/dL caused a 1% decrease in measured PGE₂ levels.

Elevated lipids will also interfere with the measurement of PGE₂. Follow the extraction recommendations described on page 7.
LIMITED WARRANTY

Arbor Assays warrants that at the time of shipment this product is free from defects in materials and workmanship. This warranty is in lieu of any other warranty expressed or implied, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose.

We must be notified of any breach of this warranty within 48 hours of receipt of the product. No claim shall be honored if we are not notified within this time period, or if the product has been stored in any way other than outlined in this publication. The sole and exclusive remedy of the customer for any liability based upon this warranty is limited to the replacement of the product, or refund of the invoice price of the goods.

CONTACT INFORMATION

For details concerning this kit or to order any of our products please contact us:

Arbor Assays
1514 Eisenhower Place
Ann Arbor, Michigan 48108 USA
Phone: 734-677-1774
Fax: 734-677-6860
Web: www.ArborAssays.com

E Mail Addresses:
Info@ArborAssays.com
Orders@ArborAssays.com
Technical@ArborAssays.com
Contracts@ArborAssays.com

DetectX®, ThioStar® and the Arbor Assays logo are all registered trademarks.